2011-02-01

Unitary matrix


Unitary matrix

From Wikipedia, the free encyclopedia
In mathematics, a unitary matrix is an n\times n complex matrix U satisfying the condition
U^{\dagger} U = UU^{\dagger} = I_n\,
where In is the identity matrix in n dimensions and U^{\dagger} is the conjugate transpose (also called the Hermitian adjoint) of U. Note this condition says that a matrix U is unitary if and only if it has an inverse which is equal to its conjugate transpose U^{\dagger} \,
U^{-1} = U^{\dagger} \,\;
A unitary matrix in which all entries are real is an orthogonal matrix. Just as an orthogonal matrix G preserves the (realinner productof two real vectors,
\langle Gx, Gy \rangle = \langle x, y \rangle
so also a unitary matrix U satisfies
\langle Ux, Uy \rangle = \langle x, y \rangle
for all complex vectors x and y, where \langle\cdot,\cdot\rangle stands now for the standard inner product on \mathbb{C}^n.
If U \, is an n by n matrix then the following are all equivalent conditions:
  1. U \, is unitary
  2. U^{\dagger} \, is unitary
  3. the columns of U \, form an orthonormal basis of \mathbb{C}^n with respect to this inner product
  4. the rows of U \, form an orthonormal basis of \mathbb{C}^n with respect to this inner product
  5. U \, is an isometry with respect to the norm from this inner product
  6. U \, is a normal matrix with eigenvalues lying on the unit circle.

No hay comentarios.: