Un problema que apareció en Internet a principios de 2011 es: "¿Cuál es el valor de 48/2 (9 + 3)?"
Dependiendo de si se interpreta la expresión como (48/2) (9 + 3) o como 48 / (2 (9 + 3)) se obtiene 288 o 2. No existe una convención estándar en cuanto a cuál de estas dos formas la expresión debe interpretarse, por lo que, de hecho, 48/2 (9 + 3) es ambiguo.
En general, para cualquier expresión de la forma a / bc es necesario insertar paréntesis para mostrar si significa (a / b) c o a / (bc).
Bajo la convención algebraica estándar, expresiones como ab + c son inequívocas: esa expresión significa solo (ab) + c; y de manera similar, a + bc significa solo a + (bc).
La convención es que cuando no se usan paréntesis para mostrar lo contrario, la multiplicación precede a la suma. Para expresiones como a − b + c se dice que cuando se tiene una secuencia de sumas y restas se trabaja de izquierda a derecha.
Probablemente otra razón por la que no existe una convención fija para el orden de multiplicación y división, como la hay para la suma y la resta, es que la gente con frecuencia hace cálculos que implican sumar y restar largas cadenas de números y los números de multiplicaciones y divisiones que vienen en los cálculos diarios tiende a ser menor; por lo que hay menos necesidad de una convención y ninguna ha evolucionado.
En muchas escuelas de hoy, a los estudiantes se les enseña el orden de las operaciones: paréntesis, exponentes, multiplicación, división, suma, resta.
Lex Fridman es un ruso profesor del MIT que tiene un canal de YouTube (https://www.youtube.com/channel/UCSHZKyawb77ixDdsGog4iWA ), Artificial Intelligence podcast, donde entrevista a los grandes de la tecnología de información. El 7 de enero de 2020, Lex entrevisto a Grant Sanderson, creador de 3Blue1Brown, un popular canal de YouTube ( https://www.youtube.com/3Blue1Brown ), que utiliza sofisticadas y elegantes visualizaciones animadas para explicar conceptos de matemáticas y sus aplicaciones en ciencia, tecnología, y sociedad.
Los dos comentarios de Sanderson que me quedaron de la entrevista fue la importancia de la notación matemática en el pensamiento científico mismo, y la caracterización de la visualización como una manera de hacer concreto un concepto abstracto.
Tanto Newton como Leibniz redujeron los problemas del cálculo de áreas, segmentos, volúmenes, a procesos de anti-derivación. Sin embargo, mientras que Leibniz se centraba en los incrementos infinitesimales, Newton usaba sus infinitesimales en la derivada misma. En Newton los infinitesimales estaban asociados directamente al cálculo de velocidades instantáneas (un claro sentido de aplicación física). En Leibniz el interés no era la aplicación física, sino los infinitesimales como entes primarios en la descripción de lo real. El énfasis de Newton era la razón de cambio, mientras que en Leibniz lo era la suma infinita de infinitesimales. Mientras que para Leibniz la notación era muy importante, Newton no le prestó mucho cuidado.
Básicamente la notación matemática, o de cualquier disciplina, para el caso, y la teoría subyacente proporciona un lenguaje común que permite a los conocedores de un tema intercambiar información de una manera eficiente. Richard Feynman cuenta en una de sus anécdotas que cuando estaba en la preparatoria, desarrollo su propia notación matemática, pero que la abandono porque era una perdida de tiempo al tener que explicarle a otro cualquier cosa. La notación debe ser una convención universal para ser útil.
Otro ejemplo, nos lo David Bennett que se plantea la pregunta de que si Los Beatles sabían teoría musical. En entrevistas los mismos Beatles reconocen que ni siquiera podían leer partituras, y aunque su talento musical es incuestionable, necesitaban alguien que tradujera sus ideas a la notación musical convencional. Ese alguien fue George Martin (https://en.wikipedia.org/wiki/George_Martin ) Martin preparación formal lleno el vacío entre el talento bruto de los Beatles y el sofisticado sonido que los distingue de todos los demás. La mayoría de los arreglos orquestales e instrumentación fue escrita o realizado por Martin.
Cuando la notación esta fuertemente establecida, las nociones teóricas en que se basa se olvidan, y se manejan solo de manera implícita. Por ejemplo, aprovechando que 1 + 4 = 5, un bromista travieso nos puede mostrar con las tres operaciones de suma, multiplicación, y división que 5 por 14 es igual a 25. Para una demostración pueden ver una plática del argentino Adrián Paenza sobre el pensamiento crítico y las matemáticas para la vida real.
Volviendo con Grant Sanderson, el tema básico es como o porque la gente se interesa o involucra con las matemáticas. Lex le pregunto a Sanderson que ha quien dirigía sus videos. Sanderson dijo que su motivación primaria es satisfacer una curiosidad intelectual propia, que en principio hacia los videos para él mismo tener un conocimiento más profundo, y que, aunque buscaba que el material publicado fuera atractivo para las masas, que era en realidad muy difícil predecir qué tan exitoso será un video. En una plática en TED, Sanderson lista sus 4 videos más populares:
The hardest problem in the hardest test. Un video sobre un problema de geometría en espacio tridimensional sobre la relación entre cuatro puntos en una esfera y el centro de la esfera.
But what is a Neural Network? | Deep learning, chapter 1. Una introducción a redes neurales.
The most unexpected answer to a counting puzzle. Un resultado de la dinámica que relaciona el número de colisiones entre dos bloques y el número π.
But what is the Fourier Transform? A visual introduction. Una introducción bastante creativa a la transformada de Fourier.
Sanderson señala que una de las objeciones al estudio de las matemáticas es que la gente siente que el tema esta desconectado de su realidad cotidiana. Sin embargo, de los cuatro videos más populares, solo el tema de las redes neurales se pudiera considerar de alguna relevancia práctica.
Sanderson especula que el elemento de drama e historia subyacente, la intriga del acertijo, la fantasía de imaginarse entre los de mayor rendimiento, es lo que al final del día involucra los temas matemáticos.
Sanderson cierra con unas referencias de Hardy sobre la belleza de las matemáticas puras y el valor adicional de que no sean útiles. Pero Sanderson anota que las matemáticas más abstractas terminan siendo útiles. Hardy usa como ejemplo de matemáticas sin uso aparente posible, la teoría de números, que en siglo veintiuno es la base de la criptografía, componente esencial de la tecnología informática.
Abbot: Tienes 40 años y estás enamorado de una niña, digamos de 10 años. Eres cuatro veces mayor que esa chica. No podrías casarte con esa chica, ¿verdad? Entonces esperas 5 años. Ahora la niña tiene 15 años y tú tienes 45. Solo tienes tres veces la edad de esa chica. Entonces esperas 15 años más. Ahora la niña tiene 30 años y tú tienes 60. Solo tienes el doble de edad que esa niña. Aquí está la pregunta. ¿Cuánto tiempo tienes que esperar antes de tú y ella tengan la misma edad?
Costello: ¿Qué tipo de pregunta es esa? Eso es ridículo.
Si sigo esperando ella terminará más vieja que yo.
¡Entonces ella tendrá que esperarme!
El prestamo
Abbott: Hazme un favor. Préstame $ 50.
Costello: No puedo prestarte $ 50. Todo lo que tengo es $ 40.
Abbott: está bien. Dame los $ 40 y me deberás $ 10.
Costello: ¿Cómo es que te debo $ 10?
Abbott: ¿Qué te pedí?
Costello: $ 50.
Abbott: ¿Qué me diste?
Costello; $ 40.
Abbott: Entonces me debes $ 10.
Costello: Eso es correcto. Pero me debes 40 dólares. Devuélveme mis $ 40.
Abbott: Ahí están tus $ 40. Ahora dame los $ 10 que me debes.
Esa es la última vez que le pido un préstamo de $ 50.
Costello: ¿Cómo puedo prestarle $ 50 ahora? Todo lo que tengo es $ 30.
Abbott: Dame los $ 30 y me deberás $ 20.
Costello: Esto está empeorando todo el tiempo.
¡Primero te debo $ 10, y ahora te debo $ 20!
Abbott: Entonces me debes $ 20. Veinte y 30 son 50.
Costello; No! Veinticinco y 25 es 50.
Abbott: Aquí están tus $ 30. Devuélveme mis $ 20.
Costello: ¡Todo lo que tengo ahora es $ 10!
Juego de números.
Abbott: Toma un número, cualquier número del 1 al 10, y no me digas.
Costello: lo tengo.
Abbott: ¿Es el número par o impar?
Costello: Par.
Abbott: ¿Es el número entre 1 y 3?
Costello: No.
Abbott: ¿Entre 3 y 5?
Costello: No. Creo que lo tengo.
Abbott: ¿Entre 5 y 7?
Costello: si.
Abbott: ¿Número seis?
Costello: bien. . . . ¿Como el hizo eso?
Con solo una PC y conexión a Internet es posible participar en esfuerzos científicos de alcance global.
Explorar el universo
En el sitio www.galaxyzoo.org puedes ayudar a los astrónomos a explorar el universo. El sitio contiene un cuarto de millón de imágenes obtenidas por un telescopio robótico ( Sloan Digital Sky Survey) y voluntarios pueden ayudar a clasificar las imágenes.
La búsqueda de número primos
GIMPS provee programas que se pueden usar como screen savers y buscan números primos. Inclusive hay recompensa económica para motivar el desarrollo de esta tecnología a través de EFF Cooperative Computing Awards para el que encuentre primero:
$50,000 por el primer número primo con más de 1,000,000 dígitos decimales ( Apr. 6, 2000).
Inclusive hay recompensa económica para motivar el desarrollo de esta tecnología a través de EFF Cooperative Computing Awards para el que encuentre primero:
$50,000 por el primer número primo con más de 1,000,000 dígitos decimales ( Apr. 6, 2000) $100,000 por el primer número primo con más de 10,000,000 dígitos decimales $150,000 por el primer número primo con más de 100,000,000 dígitos decimales $250,000 por el primer número primo con más de 1,000,000,000 dígitos decimales
Actualmente el primo más grande que se conoce es el primo Mersenne 44, 232,582,657-1, un número de 9,808,358 digitos así que el premio de los 100,000 dolares pudiera estar cerca.
¿Se podrá hacer algo mejor con tu PC que correr screen savers y tenerla esperando a que teclees la siguiente letra?