Mostrando las entradas con la etiqueta method. Mostrar todas las entradas
Mostrando las entradas con la etiqueta method. Mostrar todas las entradas

2014-05-27

Modified Richardson iteration


Modified Richardson iteration is an iterative method for solving a system of linear equationsRichardson iteration was proposed by Lewis Richardson in his work dated 1910. It is similar to the Jacobiand Gauss–Seidel method.
We seek the solution to a set of linear equations, expressed in matrix terms as
 A x = b.\,
The Richardson iteration is
 
x^{(k+1)}  = x^{(k)} + \omega \left( b - A x^{(k)} \right),
where ω is a scalar parameter that has to be chosen such that the sequence x(k) converges.
It is easy to see that the method is correct, because if it converges, then x^{(k+1)} \approx x^{(k)} and x(k) has to approximate a solution of Ax = b.


Convergence

Subtracting the exact solution x, and introducing the notation for the error e^{(k)} \approx x^{(k)}-x, we get the equality for the errors
e(k + 1) = e(k) − ωAe(k) = (I − ωA)e(k).
Thus,
 
\|e^{(k+1)}\| = \|(I-\omega A) e^{(k)}\|\leq  \|I-\omega A\| \|e^{(k)}\|,
for any vector norm and the corresponding induced matrix norm. Thus, if \|I-\omega A\|<1 the method convergences.
Suppose that A is diagonalizable and that j,vj) are the eigenvalues and eigenvectors of A. The error converges to 0 if | 1 − ωλj | < 1 for all eigenvalues λj. If, e.g., all eigenvalues are positive, this can be guaranteed if ω is chosen such that 0 < ω < 2 / λmax(A). The optimal choice, minimizing all | 1 − ωλj | , is ω = 2 / (λmin(A) + λmax(A)), which gives the simplest Chebyshev iteration.
If there are both positive and negative eigenvalues, the method will diverge for any ω if the initial error e(0) has nonzero components in the corresponding eigenvectors.


References

2014-04-27

Conjugate gradient method


Conjugate gradient method

From Wikipedia, the free encyclopedia

A comparison of the convergence ofgradient descent with optimal step size (in green) and conjugate gradient (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetics, converges in at most n steps where n is the size of the matrix of the system (here n=2).
In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix issymmetric and positive-definite. The conjugate gradient method is an iterative method, so it can be applied to sparse systems that are too large to be handled by direct methods such as the Cholesky decomposition. Such systems often arise when numerically solvingpartial differential equations.
The conjugate gradient method can also be used to solve unconstrained optimizationproblems such as energy minimization.
The biconjugate gradient method provides a generalization to non-symmetric matrices. Various nonlinear conjugate gradient methods seek minima of nonlinear equations.

2011-02-01

Krylov subspace


Krylov subspace

From Wikipedia, the free encyclopedia
In linear algebra, the order-r Krylov subspace generated by an n-by-n matrix A and a vector b of dimension n is the linear subspacespanned by the images of b under the first r powers of A (starting from A0 = I), that is,
\mathcal{K}_r(A,b) = \operatorname{span} \, \{ b, Ab, A^2b, \ldots, A^{r-1}b \}. \,
It is named after Russian applied mathematician and naval engineer Alexei Krylov, who published a paper on this issue in 1931.[1]
Modern iterative methods for finding one (or a few) eigenvalues of large sparse matrices or solving large systems of linear equations avoid matrix-matrix operations, but rather multiply vectors by the matrix and work with the resulting vectors. Starting with a vector, b, one computes Ab, then one multiplies that vector by A to find A2b and so on. All algorithms that work this way are referred to as Krylov subspace methods; they are among the most successful methods currently available in numerical linear algebra.
Because the vectors tend very quickly to become almost linearly dependent, methods relying on Krylov subspace frequently involve some orthogonalization scheme, such as Lanczos iteration for Hermitian matrices or Arnoldi iteration for more general matrices.
The best known Krylov subspace methods are the ArnoldiLanczosConjugate gradientGMRES (generalized minimum residual),BiCGSTAB (biconjugate gradient stabilized), QMR (quasi minimal residual), TFQMR (transpose-free QMR), and MINRES (minimal residual) methods.

References
  1. ^ Mike Botchev (2002). "A.N.Krylov, a short biography".